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Abstract: The functioning of the central nervous system (CNS) is the result of the constant integration
of bidirectional messages between the brain and peripheral organs, together with their connections
with the environment. Despite the anatomical separation, gut microbiota, i.e., the microorganisms
colonising the gastrointestinal tract, is highly related to the CNS through the so-called “gut–brain
axis”. The aim of this paper was to review and comment on the current literature on the role of
the intestinal microbiota and the gut–brain axis in some common neuropsychiatric conditions. The
recent literature indicates that the gut microbiota may affect brain functions through endocrine and
metabolic pathways, antibody production and the enteric network while supporting its possible role
in the onset and maintenance of several neuropsychiatric disorders, neurodevelopment and neurode-
generative disorders. Alterations in the gut microbiota composition were observed in mood disorders
and autism spectrum disorders and, apparently to a lesser extent, even in obsessive-compulsive
disorder (OCD) and related conditions, as well as in schizophrenia. Therefore, gut microbiota might
represent an interesting field of research for a better understanding of the pathophysiology of com-
mon neuropsychiatric disorders and possibly as a target for the development of innovative treatments
that some authors have already labelled “psychobiotics”.

Keywords: microbiota; gut–brain axis; central nervous system; immune system; autism spectrum
disorders; mood disorders; obsessive-compulsive disorder; schizophrenia; novel psychotropic drugs;
neuropsychiatric disorders

1. Introduction

The terms “microbiota” and microbiome refer, respectively, to the collection of bacteria,
viruses and fungi colonising different parts of the body, and to the complete genetic material
encoded by the microbiota [1–3]. The gut microbiota, i.e., the commensal microorganisms
within the gut, performs essential tasks for the normal functioning of the organism, such
as the fermentation and digestion of carbohydrates, development of lymphoid tissues
associated with the mucous membranes, production of vitamins, prevention of colonisation
by pathogenic microorganisms and stimulation of the immune system [2,4–6]. The bacterial
cells forming intestinal microbiota outnumber human cells by 10 times and encode for
a gene set that is 150 times larger than the human one [1]. The human gut microbiota,
mainly consisting of Proteobacterias, Firmicutes, Actinobacteria and Bacteroidetes, changes
during the course of life, as it is constantly influenced by several individual factors, such
as the type of birth, infections, therapies, diet, smoking, physical activity, stressful events,
environmental factors and medical diseases [7–9]. It is also worth highlighting that the
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brain’s development, depending on pre- and post-natal genetic and environmental factors,
occurs in parallel with the constitution of the microbiota. A newborn’s microbiota has a low
density but, as the individual grows, it is enriched with certain microorganisms, becoming
increasingly capable of activating signals and metabolic pathways that modulate neuronal
function [10–13].

The development and functioning of the central nervous system (CNS) depend on
the integration of central factors, peripheral signals and environmental influences. The gut
microbiota represents an excellent example of this integrated system, as it is an important
link between our body and the environment. Again, given that it engages in two-way
communication with the CNS, it outlines a fascinating model of the connection between
central and peripheral systems [3].

The gastrointestinal (GI) system is regulated by the so-called enteric nervous system
(ENS), which is formed by neurons located in the GI tract itself and enteric glial cells [6,14].
This results in bidirectional communication between the brain and gut. The gut and brain
influence each other through different mechanisms that are mediated by neurotransmitters
and immune modulators, such as cytokines and metabolic products and hormones, with
a pivotal involvement of the hypothalamic–pituitary–adrenal (HPA) axis [15]. The gut
microbiota seems to play a major role in this mutual connection that is called the “gut–brain
axis” [16]. Gut microbiota is capable of producing and modulating the bioavailability of the
main neurotransmitters, influencing GI motility and fermenting dietary polysaccharides,
that is to say, the gut microbiota seems to influence important processes that are often
altered in different neuropsychiatric conditions, such as epilepsy, stroke, Parkinson’s
disease, schizophrenia (SZ), obsessive-compulsive disorder (OCD), depression, anorexia
nervosa (AN) and behavioural and neurodevelopmental disorders [17–25]. Therefore,
dysbiosis, i.e., the imbalance in the composition of microbiota, might be one of the factors
involved in the onset and maintenance of both some psychiatric and functional GI disorders.
It is not uncommon to observe inflammatory bowel disease (IBD) in subjects suffering from
mood disorders (MDs), anxiety and OCD, or abdominal pain in patients with SZ or panic
disorder [26–29].

The immune system appears to be at the heart of the gut–microbiota–brain relationship.
Indeed, an altered composition of the gut microbiota might compromise the epithelial
intestinal integrity and lead to a defective defence against pathogenic microorganisms, with
consequent inflammatory reactions and, ultimately, neuro-inflammation [30]. Moreover,
dysbiosis causes an increase in the amount of short-chain fatty acids (SCFAs), such as
acetate, propionate and butyrate, that might activate microglia cells, i.e., the immune cells
of the CNS, leading to an increase in cytokines that may eventually alter brain connections
and the blood–brain barrier (BBB) [31,32]. Interestingly, microbial-induced BBB dysfunction
is hypothesised to play a causative role in mood and anxiety disorders, SZ, autism spectrum
disorders (ASDs) and neurodegenerative diseases [33]. A role of the gut–brain axis in the
development of CNS tumours was also proposed [34]. Finally, a growing number of
findings suggest that the microbiota might modulate neuronal maturation and myelination
processes in brain areas that are responsible for the control of emotions, executive functions
and working memory, which are impaired in SZ, MDs and ASDs [35–37].

Given the available evidence, it is plausible that a better understanding of the influence
exerted by intestinal flora on the CNS and the role of the gut microbiota in the onset and
maintenance of psychiatric disorders might lead to producing novel treatments, including
probiotics, personalised lifestyles, faecal microbiota transplantation (FMT) and specific
diets [38].

Therefore, the aim of this paper was to review and comment on the current lit-
erature on the role of the intestinal microbiota and gut–brain axis in some common
neuropsychiatric conditions.
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2. Methods

According to the PRISMA guidelines [39], the databases of PubMed, Scopus, Embase,
PsycINFO and Google Scholar were accessed in order to research and collect English
language papers published between 1 January 1969 and 15 May 2021. Free text terms
and MeSH headings were combined as follows: “(Microbiota OR gut microbiome OR
gut-brain axis) AND (CNS OR psychiatric disorders OR neuro-inflammation OR immune
system OR depressive disorder OR depression OR mood disorders OR bipolar disorder
OR obsessive-compulsive disorder OR OCD OR schizophrenia OR neurodevelopmental
disorders OR eating disorders OR autism)”. All the authors agreed to include conference
abstracts, posters and case reports in the review if they were published in indexed journals.
The following inclusion criteria were adopted: studies carried out in clinical samples of
adults and children/adolescents, reliable diagnosis of psychiatric disorders according
to structured interviews and standardised criteria and reliable assessment of outcome
measures. All the authors equally contributed to identifying potential information specific
to this topic amongst the titles and abstracts of the publications.

3. Results

The first selection excluded 7389 titles because they were: duplicates or duplicated
results, not related to the scope of the paper or not informative enough. The second
selection excluded 668 abstracts after being read and reviewed, as the information reported
did not fulfill the scope of our paper and/or the presented information did not seem
relevant to the discussed topic. Subsequently, 83 publications were excluded after being
completely read and evaluated, as they did not provide enough information and/or were
not sufficiently in line with our review. Finally, 55 papers were included in the present
review (Figure 1).
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4. CNS and Microbiota: The Gut–Brain Axis

The large number of novel studies on the relationships between microbiota and the
CNS has led to the recognition of the gut–brain axis, that is to say, the bidirectional con-
nection occurring between the gut microbiota and the brain through hormonal, metabolic,
immunological and neural signalling, with the latter involving central, autonomic and
enteric nervous systems [6,40–42]. This mutual connection seems to reflect a reciprocal in-
fluence: the diversity in microbiota composition affects brain development and behaviours,
and vice versa [42].

To date, the information on bottom-up regulation (i.e., the influence of gut microbiota
on the brain) mainly derives from translational and animal model studies, with a particular
focus on anxiety and depression, while studies in humans are still limited [43]. Germ-
free (GF) mice, i.e., mice without commensal intestinal bacteria, showed a reduction in
anxiety-like behaviours [44–46], while according to another study, GF mice showed deficits
in social cognition, anxiety-like behaviours and altered stress response, which was maybe
related to a bigger volume of amygdala and hippocampus and a different morphology of
dendrites in these brain regions in comparison to conventionally colonised (CC) mice [47].
Puppies born from GF mice colonised with fast-growing human neonatal microbiota
showed accelerated neuronal differentiation and fewer signs of inflammation than those
colonised with slow-growing human microbiota [48].

Interestingly, brain changes that are promoted by microbiota might occur through
the regulation of gene expression and neuronal transcription [48,49]. A murine model
study demonstrated the upregulation of myelin-related genes in GF mice, specifically in
the prefrontal cortex (PFC), leading to hypermyelinated axons. Furthermore, the sub-
sequent colonisation of these animals (the so-called exGF) resulted in a reverted mod-
ulation [49]. Gene expression regulation that was driven by intestinal microbiota also
led to the modulation of neuro-inflammation, production of insulin-like growth factor-1
(IGF-1) and changes in multiple neurotransmitter (serotonin (5-hydroxytryptamine, 5-HT),
dopamine, glutamate and gamma-aminobutyric acid (GABA)) pathways, transporters and
ion channels [48]. Focusing on neurotransmitters, male GF mice show increased 5-HT and
5-hydroxyindoleacetic acid (5-HIAA, the main 5-HT metabolite) in the hippocampus [46],
while Bifidobacterium infantis administration in rats increased tryptophan, the 5-HT pre-
cursor [50]. As already mentioned, the effects of gut microbiota on neurotransmission
extend beyond 5-HT. Non-pathogenic bacteria, such as Lactobacillus rhamnosus, modulate
GABAergic transmission in mice, with beneficial effects on anxiety and depression [51],
and GABA production by cultured intestinal strains of Lactobacillus and Bifidobacterium
was observed [52]. Nonetheless, regarding the relationship between brain and GI tract,
it is worth noting that about 90% of 5-HT is synthesised in the gut, where it modulates
GI motility, and then is sequestered by platelets and transported to various body sites,
acting as a pleiotropic hormone [53,54]. Indeed, the intestinal synthesis of 5-HT seems to
be positively influenced by microbiota, consequently increasing 5-HT in the GI mucosa
and lumen, platelets, blood and brain. As such, microbiota influence peripheral and central
5-HT concentrations [54].

Stress is another factor involved in this complex system. The bidirectionality of
the gut–brain axis includes a top-down modulation, that is to say, the modulation of
GI functions and permeability itself is influenced by psychological stress, which often
serves as a trigger for the onset, relapses and recurrences and worsening of psychiatric
disorders [42,55]. Indeed, some studies in animal models showed that stressed pups
had higher plasmatic corticosterone levels, enhanced systemic immune responses and
altered microbiotas [56–58]. The HPA axis is activated by inflammatory cytokines and other
products, including bacterial ones, as shown in infections sustained by Escherichia coli, a
member of the Enterobacteriaceae family, i.e., bacteria colonising the enteric system [59–62].

Furthermore, the links between the brain and gut also play a role in the immune
response. An example of this link is provided by microglia. As the resident macrophages of
CNS, microglia are involved in the immune surveillance of the CNS itself [63], and as such,
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possibly in different brain disorders [64,65]. Microglia maturation, activation and function
are affected by microbiota composition. According to some authors, microglia changes
are driven by gut eradication, re-colonisation and variations in microbiota complexity.
Interestingly, GF mice share defective microglia and impaired innate immunity [64].

It should be noted that the GI tract represents the largest immune organ, as well as
the largest surface of contact with external agents [55]; therefore, it was hypothesised that
alterations of intestinal flora, through regulatory T cells (Treg) abnormalities, might be
involved in the epidemic of allergic, inflammatory and autoimmune diseases and also in
psychiatric disorders [66–73].

The gut microbiota also contributes to maintaining the integrity of the intestinal
barrier. Dysbiosis increases the permeability of this barrier (the so-called “leaky gut”
syndrome), allowing for bacterial translocation and the passage of microbial products and
inflammation mediators into the bloodstream, and eventually in the CNS, triggering an
inflammatory reaction [74–77]. Furthermore, according to other studies, the microbiota also
influences the permeability of the BBB. Indeed, GF mice display increased BBB permeability
compared with pathogen-free mice due to a diminished expression of tight junction (TJ)
proteins (occludin and claudin-5). The exposure of GF mice to pathogen-free microbiota
leads to a higher expression of TJ proteins and a decreased BBB permeability [78]. The
model of the antibiotic-induced gut dysbiosis was also explored, as it would cause changes
in the expression of TJs, cytokines, brain-derived neurotrophic factor (BDNF) and 5-HT
transporter, eventually resulting in cognitive impairment [79]. Therefore, gut flora has been
hypothesised to be involved in both “leaky gut” and “leaky brain” syndromes [80].

5. Microbiota and Psychiatric Disorders

Recently, an increasing amount of studies have been focusing on how the interactions
between microbiota and CNS might play a role in the pathophysiology of neuropsychi-
atric disorders, mostly MDs, OCD, neurodevelopmental disorders (especially ASDs) and
neurodegenerative diseases. Therefore, the therapeutic potential of microbiota-targeted
treatments was proposed to the extent that some authors proposed to call them “psychobi-
otics” [43,81–88].

Indeed, the interactions between the host and its microbiota seem to be able to produce
significant changes in brain networks, thus influencing behaviours and neuropsychiatric
disorders [89].

Taking into account the immunological model for psychiatric disorders, the gut micro-
biota’s composition might influence psychic functions to the extent that the inflammatory
cascade and the immune stimulation vary depending on the bacterial species involved [62].
Nonetheless, according to this model, gut microbiota might also be one of the mediators re-
sponsible for the well-known relationship between psychiatric disorders and GI symptoms
and disturbances [6].

5.1. Mood Disorders

Pervasive dysregulation of mood and psychomotricity, alterations of biorhythms,
changes in appetite and sleep pattern, cognitive disturbances and impaired global func-
tioning characterise MDs. Currently, this nosological category includes major depression
(MDD), bipolar disorder (BD) and dysthymia [90]. While patients with MDD only suffer
from depressive episodes, mood fluctuations of both polarities are typical of BD, that can
be distinguished in BD of type I (BDI) when there is at least one lifetime manic episode or
BD of type II (BDII) when depressive episodes alternate with hypomanic ones [90].

The aetiology of MDs is largely unclear and is still the subject of deep investigation.
According to the most comprehensive hypotheses, MDD results from the interaction be-
tween an individual vulnerability and a variety of stressors/triggers entailing anatomic,
physiologic and neurochemical modifications [91–97]. Besides the classical biomarkers that
have been widely described in the past few decades, it is now evident that they are part of a
more complex picture involving inflammatory/immune systems dysfunctions [98–102], up



Life 2021, 11, 760 6 of 28

to the point that MDD is considered a systemic disease [103,104]. Basically, different intesti-
nal bacteria influence the metabolism of neurotransmitters, by modifying the availability
of tryptophan and tyrosine and, consequently, 5-HT and dopamine, respectively [105]. Not
surprisingly, the pathophysiological role of dysbiosis and the subsequent mild inflamma-
tory state in the onset and evolution of MDD was widely described, together with changes
in gut microbiota composition [106–113]. It was hypothesised that an altered intestinal
permeability might facilitate the presence of circulating cytokines. Moreover, high serum
levels of IgM and IgA against Gram-negative lipopolysaccharide (LPS) were found in de-
pressed patients, suggesting that an increased intestinal permeability allows enterobacteria
to trigger infections [114,115]. The relationship between microbiota and mood alterations
has long been investigated in an attempt to assess differences between microbiota composi-
tion in patients suffering from MDs and healthy controls [116]. A shotgun metagenomic
method was used to investigate 156 faecal samples from depressed patients and 155 faecal
samples from controls [117]. The results showed some differences in viruses, bacteria and
metabolites, but not in protozoa and fungi. Depressed patients showed a greater amount of
bacteria belonging to the genus Bacteroides, which were capable of inducing the production
of cytokines and mediating inflammatory responses [118,119], as well as a reduction in
bacteria of the genera Eubacterium and Blautia, with the latter showing anti-inflammatory
properties [120]. It was hypothesised that bacterial production of GABA can reduce de-
pressive symptoms, with intestinal levels of GABA influencing brain functions. Indeed,
low levels of GABA and its metabolites were found in the faeces of depressed subjects, as
well as a reduction in microbes that are capable of degrading phenylalanine. Interestingly,
patients suffering from depression seem to also show downregulation of the BetB gene,
that is involved in the metabolism of arginine into GABA [121–123].

Depressed subjects, as well as those suffering from IBD and chronic fatigue syn-
drome, show higher levels of Alistipes, a bacterium belonging to the phylum Bacteroidetes.
Increased permeability of the intestinal epithelium allows the passage of inflammation
factors that are induced by this bacterium to pass into the bloodstream [58,124–126]. In-
terestingly, GF mice, after undergoing FMT from MDD patients, exhibit depression-like
behaviours [108,116].

As compared with data in MDD, the literature on BD is more limited. Patients with BD
show lower amounts of faecal Bifidobacterium, Lactobacillus and Faecalibacterium than
healthy subjects [107,109]. As regards the fungal component of gut microbiota, Candida
albicans IgG levels were significantly higher in male patients suffering from BD (and also
from with SZ) than in control subjects [127].

According to some authors, the severity of manic symptoms seems to be related to the
prescription of antibiotics [128]. This finding might be due to the fact that bacterial infec-
tions that require an antibiotics prescription might lead to an inflammatory response and
immune activation that, in turn, would induce acute mania. Another possible explanation
is that antibiotics might modify the microbiota’s composition, hence increasing the risk of
altered mood states. Nonetheless, the high rate of bacterial infections (and, therefore, of
antibiotics assumption) in manic individuals could reflect a decreased performance of their
immune system [128] (Table 1).



Life 2021, 11, 760 7 of 28

Table 1. Studies on microbiota and mood disorders (MDs).

Authors and Year Type of Study Population Methods Findings

Mangiola et al., 2016
[84] Review -

Selected studies on
the role of gut
microbiota and the
use of microbiota-
modulating
strategies in
MDs/ASD

- Reduced (anxiety-like
behaviour in GF mice after
the restoration of the
intestinal microbiota;
Improved depression and
anxiety symptoms in mice
after the administration of
probiotics;

- Increased Alistipes in
depressed patients; negative
correlation between
Faecalibacterium abundance
and depression severity;

- Modulators of gut
microbiota (antibiotics,
probiotics and FMT) were
experienced only in
experimental settings in
ASD/MDs with promising
results

Colpo et al., 2017 [101] Review -

Selected studies on
the role of
inflammation and
immune-based
therapeutic
strategies in MDs

- Treatment with probiotics
may improve behavioural
symptoms (Decreased
depression-like and
anxiety-like behaviours) by
acting on monoaminergic
systems (e.g., increased
serotonin availability)
and/or decreasing levels of
systemic inflammatory
markers (decreased IL-1β,
IL-6, TNF-α, microglial
activation markers) in
animal models and improve
anxious and depressive
symptoms in humans
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Table 1. Cont.

Authors and Year Type of Study Population Methods Findings

Jiang et al., 2015 [106] Cross-sectional
study

46 depressed
patients (active
MDD and
responded MDD)
and 30 HC

Comparing blood
samples and faecal
samples using
high-throughput
pyrosequencing

- Increased faecal bacterial
alpha-diversity in the
active-MDD, but not in the
responded-MDD, compared
to the HC group; differences
in the composition of
microbiota between groups
(Increased Bacteroidetes,
Proteobacteria,
Actinobacteria,
Enterobacteriaceae and
Alistipes decreased
Firmicutes, and
Faecalibacterium in MDD
patients); negative
correlation between
Faecalibacterium and
severity of depressive
symptoms;

- No difference in the serum
inflammatory markers, while
the serum level of BDNF
differed significantly
between the groups

Aizawa et al., 2016
[107]

Cross-sectional
study

43 MDD patients
and 57 HC

Comparing faecal
samples using
bacterial
rRNA-targeted
reverse
transcription-
quantitative
PCR

- Decreased Bifidobacterium
and/or Lactobacillus in
patients compared to
controls

Zheng et al., 2016 [108]
Cross-sectional
study; animal study
(mice)

GF and SPF
Kunming mice

Open-field test,
Y-maze, tail
suspension test,
forced swimming
test; 16S rRNA gene
sequencing on
faecal samples from
MDD patients and
HC; FMT

- Depression-like behaviours
in GF mice (decreased
immobility time in the forced
swimming test);

- Significant differences in
microbiota composition of
MDD patients and HC;

- Depression-like behaviours
and disturbances of
microbial genes and host
metabolites involved in
carbohydrate and amino acid
metabolism in GF mice after
transplantation with faecal
samples from MDD patients
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Table 1. Cont.

Authors and Year Type of Study Population Methods Findings

Evans et al., 2017 [109] Cross-sectional
study

115 BD patients and
64 HC

Comparing faecal
samples using 16S
rRNA gene
sequence analysis;
psychometric
evaluations

- Decrease Faecalibacterium in
BD;

- Significant relationships
between the fractional
representation of several
operational taxonomical
units and the self-reported
burden of disease measures
within BD individuals

Flowers et al., 2017
[110]

Cross-sectional
study

117 BD patients
(AAP-treated or
non-AAP-treated)

Comparing faecal
samples using 16S
ribosomal
sequencing

- Decreased species diversity
in AAP-treated females;

- Differences in the
composition of microbiota
between treatment groups
(Lachnospiraceae,
Akkermansia and Sutterella)

Painold et al., 2019
[112]

Cross-sectional
study

32 BD patients and
10 HC

Comparing blood
samples and faecal
samples using 16S
rRNA gene
sequencing

- Negative correlation
between microbial
alpha-diversity and illness
duration;

- Increased Actinobacteria and
Coriobacteria in BD,
increased Ruminococcaceae
and Faecalibacterium in HC;

- Increased Lactobacillales,
Streptococcaceae and Bacilli
in BD individuals with
higher IL-6 levels; Increased
Faecalibacterium in BD
individuals with higher
malondialdehyde levels;
tryptophan levels associated
with the family of
Lactobacillaceae

Huang et al., 2019 [113] Review - 12 selected human
studies

- Decreased microbial
diversity in depressed
patients (Increased
Actinobacteria,
Enterobacteriaceae and
decreased Faecalibacterium);

- Specific gut bacteria were
associated with
inflammatory markers and
metabolic profiles, disease
severity, duration of illness,
psychiatric symptoms and
pharmacological treatment
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Table 1. Cont.

Authors and Year Type of Study Population Methods Findings

Maes et al., 2008 [114] Cross-sectional
study

MDD patients and
HC

Comparing blood
samples

- Increased serum IgM and
IgA against LPS of
enterobacteria in MDD
patients

Slyepchenko et al., 2017
[115] Narrative review -

2016 selected
studies on the role
of intestinal
dysbiosis in the
pathophysiology of
MDD and somatic
comorbidities

- Gut dysbiosis and the leaky
gut may influence several
pathways implicated in the
biology of MDD and related
medical comorbidities

Kelly et al., 2016 [116]
Cross-sectional
study; animal study
(rats)

34 MDD patients
and 33 matched HC

Comparing blood,
salivary and faecal
samples; FMT to a
microbiota-
deficient rat
model

- Decreased gut microbiota
richness and diversity in
MDD patients (decreased
Prevotellaceae) and rats after
FMT from MDD patients;

- Behavioural (anhedonia,
anxiety-like behaviours) and
physiological depressive
features (increased CRP and
intestinal transit time) and
alterations in tryptophan
metabolism (increased
kynurenine/tryptophan
ratio) in mice after faecal
transplantation from MDD
patients

Yang et al., 2020 [117] Cross-sectional
study

156 MDD patients
and 155 HC

Whole-genome
shotgun
metagenomic and
untargeted
metabolomic
methods

- Increassed Bacteroides,
decreased Blautia and
Eubacterium in MDD
patients

Patterson et al., 2019
[122]

Animal study
(mice)

Diet-induced obese
and metabolically
dysfunctional mice

Daily
administration of
GABA-producing L.
brevis (L. brevis
DPC6108 or L.
brevis DSM32386)
for 12 weeks

- Decreased accumulation of
mesenteric adipose tissue,
increassed insulin secretion
following glucose challenge
and plasma cholesterol
clearance;

- Decreassed despair-like
behaviour and basal
corticosterone production
during the forced swim test

Naseribafrouei et al.,
2014 [125]

Cross-sectional
study

37 depressed
patients and 18 HC

Comparing faecal
samples using 16S
rRNA gene
sequencing

- Increassed Bacteroidales and
decreased Lachnospiraceae
in depressed patients;

- Significant association
between depression and one
clade within the genus
Oscillibacter and one clade
within Alistipes
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Table 1. Cont.

Authors and Year Type of Study Population Methods Findings

Severance et al., 2016
[127]

Cross-sectional
study

Two cohorts
totaling 947
individuals with SZ
and BD, as well as
HC

Comparing blood
samples in patients
with SZ and BD, as
well as HC

- C. albicans seropositivity
increased the odds for an SZ
diagnosis in males,
decreased cognitive scores in
SZ females and correlated
with decreased performance
on memory modules for both
disorders;

- C. albicans IgG levels were
not impacted by
antipsychotic medication;

- Elevated C. albicans levels in
males with SZ and females
with BD were associated
with GI disturbances

Dickerson et al., 2017
[128] Review -

Selected human
studies on the
relationship
between immune
alterations and
microbiome in SZ
and BD

- Microbiome may affect
cognition and behaviour by
altering the functioning of
the immune system (animal
studies);

- Evidence of increased
gastrointestinal
inflammation in SZ and BD
based on measures of
microbial translocation;

- Increassed rate of recent
antimicrobial prescription in
patients with acute mania,
which were associated with
Increassed severity of mania
symptoms

Macedo et al., 2017
[129] Narrative review -

120 selected articles
on the mutual
relationship
between stress,
depression and gut
microbiota
composition and
antimicrobial effect
of ADs and vice
versa

- MDD was associated with
changes in gut permeability
and microbiota composition;

- ADs presented antimicrobial
effects and, conversely, some
antimicrobials presented
antidepressant effects

Legend: AAP—atypical antipsychotics; Ads—antidepressants; ASD—autism spectrum disorders; BD—bipolar disorder; BDNF—
brain-derived neurotrophic factor; C. albicans—Candida albicans; CRP—C reactive protein; FMT—faecal microbiota transplantation;
GABA—gamma-aminobutyric acid; GF—germ-free; GI—gastrointestinal; HC—healthy controls; L. brevis—Lactobacillus brevis; LPS—
lipopolysaccharide; MDD—major depressive disorder; PCR—polymerase chain reaction; SPF—specific pathogen-free; SZ—schizophrenia;
TNF-α—tumor necrosis factor alpha.

5.2. Obsessive-Compulsive Disorder and Related Conditions

Obsessive-compulsive disorder (OCD) is a common psychiatric condition that is
characterised by obsessions, compulsions or both. Obsessions are recurrent, persistent, in-
trusive and unwanted thoughts, urges or images that cause marked anxiety or distress. The
individual tries to ignore, suppress or neutralise obsessions by performing a compulsion
that is a repetitive behaviour or mental act [90].

Obsessive-compulsive disorder was included in the “anxiety disorders” group [130]
until the publication of DSM-5, where it gained categorical autonomy within the “obsessive-
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compulsive and related disorders” (OCDRs) [90]. However, according to some authors,
many of the findings on the relationship between microbiota and anxiety-like behaviours
may also be related to OCD, given that anxiety remains a pivotal dimension in OCD [42].
Nonetheless, some attempts were made to clarify how gut microbiota alterations are
specifically related to obsessive-compulsive symptoms.

Recent literature has mostly highlighted the role of the immune system, the intestinal
microbiota and their interactions in the onset and maintenance of OCD. Taken together,
the findings collected so far suggest that immunological dysfunctions and altered gut
microbiota composition might be involved in the aetiology of OCD. The marble-burying
test, a murine model for anxiety and OCD-like behaviours, was affected by gut microbiota
manipulation [131–133]. RU 24969, a 5-HT1A-1B receptor agonist, was used in mice
to induce OCD-like behaviours that were attenuated by pre-treatment with probiotics
(Lactobacillus rhamnosus) and fluoxetine, a selective 5-HT reuptake inhibitor (SSRI) that
is considered a first-line treatment of this condition [134], in comparison to pre-treatment
with saline. Moreover, the protection against OC symptoms observed with probiotics and
with fluoxetine pre-treatments was similar [132]. Similarly, quinpirole hydrochloride was
injected in rats to induce OC symptoms that improved after treatment with Lactobacillus
casei shirota, with fluoxetine and with the combination of both. These treatments also
caused an increase in BDNF and a decrease in 5-HT2A receptor expression in the orbito-
frontal cortex (OFC), one of the brain areas that is possibly altered in OCD [135].

A recent case report of a boy with ASD, OCD, tics, self-injurious behaviour (SIB),
a history of GI disturbances and a global immune dysregulation documented that Sac-
charomyces boulardii administration, aimed at reducing GI symptoms, resulted in an
improvement of OCD and SIB [136]. The authors also underlined how ASD, OCD and GI
manifestations are often in comorbidities while suggesting a possible common pathophysi-
ological role of altered gut microbiota [136]. Since converging reports highlight the role
of the HPA axis and stress in OCD onset and worsening [137–139], alteration of the gut
microbiota might represent the link between the stress response and the development of
OCD [140]. As already mentioned, stressors may induce modifications in the gut microbiota
populations [141], such as a decrease in Bacteroides and an increase in Clostridium species,
and lead to bacterial translocation [57]. On the other hand, a randomised double-blind
controlled trial reported that oral administration of Lactobacillus reduced salivary cortisol
levels in young adults under examination stress [142].

It was suggested that even antibiotics might alter the composition of intestinal flora
up to the extent that they and not group A beta-haemolytic streptococcus would be the
causative factor of the paediatric autoimmune neuropsychiatric disorders associated with
streptococcal infection, the so-called PANDAS [140,143], or, more recently, “paediatric acute-
onset neuropsychiatric syndrome” (PANDAS) and “childhood Acute Neuropsychiatric
Syndrome” (CANS) [140].

Further evidence of the relationships between microorganism colonisation and the
immune system that might be useful regarding OCD (and other psychiatric disorders)
derives from the observation of antimicrobial activity exerted in vitro by SSRIs alone and
in combination with antibiotics, resulting in a decreased minimal inhibitory concentration
(MIC) and the conversion of multiply resistant bacterial strains to sensitive ones [144]
(Table 2).
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Table 2. Studies on the relationships between microbiota and obsessive-compulsive disorder (OCD).

Authors and Year Type of Study Findings

Kantak et al., 2014 [132] Animal study
(BALB/cJ house mice)

- Pretreatment with
probiotics (L. rhamnosus
GG) or with fluoxetine
attenuated the OCD-like
behaviours induced by
RU 24969 in comparison
with saline pretreatment;

- The effects of L.
rhamnosus pretreatment
and fluoxetine
pretreatment on
OCD-like behaviours
were comparable

Sanikhani et al., 2020 [135] Animal study (rats)

- Treatment with L. casei
Shirota, with fluoxetine
and with the
combination of both
reduced OCD-like
symptoms induced by
quinpirole
hydrochloride;

- L. casei shirota might
modulate gene
expression (Increassed
BDNF, decreassed
5-HT2A receptors) in the
OFC

Kobliner et al., 2018 [136] Case report

S. boulardii administration,
aimed at reducing GI
symptoms, resulted in an
amelioration of OCD and SIB
in a boy with ASD, OCD, tics,
SIB, a history of GI
disturbances and global
immune dysregulation

Rees et al., 2014 [140] Review

Antibiotics altering the
composition of intestinal flora
could be the causative factor
of PANDAS rather than
GABHS

Legend: BDNF—brain-derived neurotrophic factor; GABHS—group A beta-haemolytic streptococcus; GI—
gastrointestinal; L. casei Shirota—Lactobacillus casei Shirota; L. rhamnosus GG—Lactobacillus rhamnosus
GG; OFC—orbitofrontal cortex; PANDAS—paediatric autoimmune neuropsychiatric disorders associated with
streptococcal infections; S. boulardii—Saccharomyces boulardii; SIB—self-injurious behaviour.

5.3. Schizophrenia

Schizophrenia is a psychiatric disorder, usually with an early onset during adolescence,
and is characterised by delusions, hallucinations, disorganised thinking (speech), grossly
disorganised or abnormal motor behaviour (including catatonia) and negative symptoms,
resulting in a severe impairment of global functioning and cognitive abilities [90,145]. The
aetiology of SZ is multifactorial, as it includes the interaction between genetic and environ-
mental factors [146]. Within the framework of this multifactorial model, the involvement of
the immune system was also hypothesised based on some evidence showing that maternal
infections during pregnancy increase the risk of psychosis [147] and that schizophrenic
patients often suffer from comorbid autoimmune diseases or atopic disorders [148,149],
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as well as alterations of different inflammatory parameters [150,151]. Indeed, subjects
with acute psychosis show high serum levels of IL-6, TNF-α and soluble IL-2 receptor
(sIL-2R); chronic SZ patients have increased Il-6, IL-1β and IL-2R concentrations [152];
and those with a psychotic onset display high prostaglandin E2 (PGE2) levels and high
COX activity [153,154]. According to genome-wide association studies [155], many of
the 108 loci associated with susceptibility to developing SZ are expressed in tissues with
immune activity and some human leukocyte antigen (HLA) loci are related to an increased
likelihood of developing SZ [156]. Studies in animal models suggested that infections
during pregnancy might affect brain development in the offspring through changes in
microglia, leading to behavioural and cognitive alterations in adolescence [157].

Regarding the relationship between microbiota and SZ, research is still in its infancy.
As mentioned above, animal studies underlined the role of microbiota in the postnatal
development and maturation of neuronal, immune and endocrine systems, which influence
processes, such as cognition and social behaviour, that are altered in SZ patients [158].
Studies conducted on schizophrenic patients led to intriguing results. Indeed, both treated
and untreated patients with SZ showed altered gut microbiota and decreased microbiome
heterogeneity compared with healthy controls. Moreover, some unique bacterial taxa
and high Lactobacillus gut levels were related to the severity of the clinical picture in
patients with SZ [159,160]. A cross-sectional study that analysed the composition of faecal
microbiota in both schizophrenic and healthy subjects through 16S rRNA sequencing
showed that the first showed abundances of the Proteobacteria Phylum, Succinivibrio,
Megasphaera, Collinsella, Clostridium, Klebsiella and Methanobrevibacter. Therefore,
the authors proposed a microbiota-based diagnosis and prognosis of SZ [161]. A study
conducted on first-episode schizophrenic patients reported altered microbiota composition
that was significantly modulated by risperidone, a first-generation antipsychotic (FGA), an
effect possibly related to drug-induced metabolic changes [162]. Further evidence suggests
that antipsychotics may indeed affect microbiota levels in patients with SZ, specifically in
regard to the taxonomic distribution in the case of chronic treatments [163]. The effects
of antipsychotic may also be boosted by some antibiotics, such as minocycline, which
are able to modify the gut microbiota [164]. However, evidence on this matter is still
controversial, as different studies did not detect similar effects of APs in the modulation of
gut microbiota [165,166]. Again, the gut microbiota has been proposed as a factor that is
responsible for the lack of response observed in some schizophrenic patients [167]. On the
other hand, it was pointed out how probiotics showed no clinical utility in both negative
or positive symptoms, albeit only three studies were fully reviewed [168]. Interestingly, in
a murine model, inulin, which is a dietary fibre mainly produced by plants [169], was also
proposed as a potential treatment in SZ patients due to its anti-inflammatory action and
the effects exerted on the gut microbiota [170].

Recently, the relationship between the gut microbiome and brain morphological and
functional correlates was investigated in patients with SZ. At the genus level, compared to
healthy control subjects, SZ patients displayed a higher abundance of Veillonella, whilst
the abundance of Roseburia and Ruminococcus was lower. Moreover, a comparison
of MRI images highlighted significant differences in both the volume of gray matter
and the regional homogeneity amongst the two groups and higher amplitudes of low-
frequency fluctuation in SZ patients. Finally, both changes in gray matter volume and
regional homogeneity correlated with the diversity of the gut microbiota [171]. In a similar
fashion, significant changes in the volume of the right middle frontal gyrus seem to be
related to the specific composition of gut microbiota in SZ [163]. Besides the hypothesis
stating that altered gut microbiota might cause the abnormal activation of the immune
system, making the gut barrier more susceptible to micro-environmental changes and
leading to neuro-inflammation processes involving microglia-mediated neuronal damage,
apoptosis, abnormal brain development and altered connectivity between brain regions,
even epigenetic modulation might be a mechanism underlying the link between microbiota
and SZ [172]. Indeed, gut microbiota might affect gene expression through acetylation
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and methylation processes in response to environmental cues, possibly constituting a link
between environmental risk factors and epigenetic changes [173,174].

Taken together, these findings, albeit limited, appear intriguing. However, more
studies are needed to clarify the role of gut microbiota in SZ in order to increase the
pathophysiological mechanisms of this disorder and, eventually, to promote and improve
therapeutic strategies (Table 3).

Table 3. Studies on the relationships between gut microbiota and schizophrenia (SZ).

Authors and Year Type of Study Methods Findings

Zheng et al., 2019
[160]

Cross-sectional study;
animal study

Comparing gut
microbiota between
63 treated and
untreated SZ patients
and 69 HCs; GF mice
received SZ FMT

- Both treated
and untreated
SZ subjects
showed altered
microbiota and
decreased
microbiome
heterogeneity
than HC;

- SZ severity was
correlated with
unique bacterial
taxa;

- GF mice
receiving SZ
FMT showed
lower glutamate
and higher
glutamine and
GABA in the
hippocampus
and displayed
SZ-relevant
behaviours

Shen et al., 2018 [161] Cross-sectional study

Comparing gut
microbiota between
64 SZ patients and 53
HC using 16S rRNA
sequencing

- Increassed
Proteobacteria,
Succinivibrio,
Megasphaera,
Collinsella,
Clostridium,
Klebsiella and
Methanobre-
vibacter in
SZ;

- Decreassed
Blautia,
Coprococcus
and Roseburia
in SZ;

- Proposed
microbiota-
based diagnosis
for SZ
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Table 3. Cont.

Authors and Year Type of Study Methods Findings

Yuan et al., 2018 [162] Cross-sectional study

Comparing gut
microbiota between
41 first-episode SZ
patients and 41 HCs;
testing 24-week
risperidone treatment
effects

- Altered
microbiota
composition in
patients,
modulated by
risperidone
treatment

Li et al., 2021 [171] Cross-sectional study

Investigating faecal
microbiota
differences between
38 SZ patients and 38
HC, as well as
exploring whether
such differences were
associated with brain
structure and
function, through 16S
rRNA sequencing,
sMRI and rs-fMRI

- SZ showed
increassed
Veillonella,
decreased
Ruminococcus,
Roseburia,
GMV and ReHo;
increased
amplitudes of
low-frequency
fluctuation,

- Both GMV and
ReHo were
related to the
diversity of gut
microbiota

Legend: GABA—gamma-aminobutyric acid; GF—germ-free; GMV—gray matter volume; HC—healthy controls;
FMT—faecal microbiota transplant; ReHo—regional homogeneity; rs-fMRI—resting-state functional magnetic
resonance imaging; sMRI—structural magnetic resonance imaging.

5.4. Autism Spectrum Disorders

Autism spectrum disorders (ASDs) include different psychopathological conditions
that are characterised by persistent deficits in social communication and social interaction,
as well as limited and repetitive behaviours, interests or activities. According to DSM-
5 [90], ASDs include autistic disorder, Asperger’s syndrome, childhood disintegrative and
pervasive developmental disorders not otherwise specified [90].

Subjects with autism are often reported to suffer from GI symptoms [175–180]. A
systematic meta-analysis found a significantly higher prevalence of GI symptoms amongst
ASD children compared to control subjects [181]. According to some authors, these GI
symptoms even correlate with autism severity [182,183]. Along with GI symptoms, ASD
subjects were found to also show an altered gut flora [184–186].

In the last two decades, an impressive number of cross-sectional studies reported
significant differences in microbiota composition between children with an ASD and con-
trols [187–195], thus strengthening the hypothesis of a possible link between GI dysbiosis
and ASD. On the other hand, a cross-sectional study comparing intestinal microbiota of
autistic children (with and without GI symptoms) and their siblings detected no significant
intergroup differences [196]. The authors then suggested that GI symptoms in ASD might
depend on anxiety and diet patterns, rather than on microbiota alterations. Indeed, it
is well known that ASD is frequently associated with peculiar eating patterns, usually
characterised by food selectivity [197,198] and avoidant/restrictive food intake disorder,
which sometimes may lead to nutritional deficiency diseases [199]. Due to this evidence,
when it comes to investigating microbiota alterations in ASDs, it was recommended that
more studies considering the eating habits of participants be undertaken [87].

Other authors also wonder whether altered microbiota in ASD represents a comorbid
condition, a causative factor or a consequence of the neuropsychiatric disorder [187,200]. In
any case, the large number of studies documenting the possible involvement of microbiota
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in ASD pathogenesis led to considering whether treatments acting on gut flora could
ameliorate ASD symptoms. An open-label trial consisting of a 12-week administration of
vancomycin (a minimally absorbed oral antibiotic) in 11 children with regressive-onset
autism reported behavioural improvement; however, this was not sustained at follow-ups
that occurred between 2 and 8 months later [201]. In another open-label trial, Kang et al.
tested the effects of microbiota transfer therapy (MTT) in 18 children with ASD [183]. MTT
consisted of a 2-week antibiotic treatment, a bowel cleanse and then faecal microbiota trans-
plant (FMT). At the end of the treatment, there were changes in microbiota composition (in
particular, an increase in Bifidobacterium, Prevotella and Desulfovibrio), an 80% reduction
of GI symptoms and improvement of ASD symptoms. All the results were confirmed after
8 weeks [183] (Table 4).

Table 4. Studies on gastrointestinal (GI) symptoms and gut microbiota composition in autism spectrum disorder (ASD).

Authors and Year Type of Study Participants (N) Methods Findings

McElhanon et al., 2014
[181]

Systematic
meta-analysis

ASD group:
2215;
comparison group:
50664

15 studies included in
the systematic review

Greater prevalence of
GI symptoms among
children with ASD
compared with control
children

Adams et al., 2011 [182] Cross-sectional study 58 ASD children; 39
healthy controls

GI symptoms: assessed
with a modified
six-item GI Severity
Index (6-GSI)
questionnaire;
autistic symptoms:
assessed with the
Autism Treatment
Evaluation Checklist
(ATEC)

Correlations between
GI symptoms and
autism severity

Kang et al., 2017 [183] Open-label trial 18 ASD-diagnosed
children MTT

- Decreased GI
symptoms;

- Improvement of
ASD symptoms;

- Changes in
microbiota
composition

Gondalia et al., 2012
[196] Cross-sectional study

28 autistic children
with GI dysfunction; 23
autistic children
without GI dysfunction;
53 neurotypical siblings

Comparing gut
microbiota

No significant
difference between
groups

Sandler et al., 2000
[201] Open-label trial 11 children with

regressive-onset autism
Administration of
vancomycin

Short-term behavioural
improvement

Legend: MTT—microbiota transfer therapy.

5.5. Miscellanea

The gut–brain axis appears to be involved in several other different neuropsychiatric
syndromes in children and adults that will be briefly reviewed herein for completeness,
although the available data are still limited.

Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disor-
der that is characterised by inappropriate levels of hyperactivity, difficulty in controlling
behaviour and/or attention problems [90]. A link between microbiota and ADHD de-
velopment or manifestations was suggested. Preliminary evidence indicates that specific
diets or dietary components modulating gut microbiota might influence brain activity
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in regions involved in cognitive and behavioural processes that are relevant for ADHD
symptoms [89,202] (Table 5).

Table 5. Studies on the relationships between gut microbiota and attention-deficit/hyperactivity
disorder (ADHD).

Authors and Year Type of Study Findings

Cenit et al., 2017 [89] Review

- Gut microbiota transplantation
can transfer a behavioural
phenotype (studies on animal
samples);

- Microbiota could play a role in
mental health by regulating
inflammatory and endocrine
secretions, synthetising
neuroactive compounds and
interacting with the vagal nerve
(studies on animal samples);

- Dietary components
modulating gut microbiota may
influence ADHD development
or symptoms (preliminary
human studies)

Cenit et al., 2017 [202] Review

- Specific diets or dietary
components (including
probiotics) may alter brain
activity in regions that are
relevant to cognition, behaviour
and specific ADHD symptoms;

- Inflammation and oxidative
stress, partly triggered by
alterations in gut microbiota
composition and both
associated with ADHD, may
play an important role in the
aetiopathogenesis of ADHD
through neuroinflammation

Eating disorders (EDs) represent a major health concern, especially in Western coun-
tries and amongst the young population [203], and are characterised by a persistent dis-
turbance of eating or eating-related behaviours, resulting in the altered consumption or
absorption of food and leading to significant impairment in physical health or psychosocial
functioning [90]. Anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorder
(BED) are the three most relevant categories of EDs [203]. Subjects suffering from BN
engage in recurrent episodes of binge eating and inappropriate compensatory behaviours
aimed at preventing weight gain, while AN is characterised by a restriction of nutritional
intake, with or without binge-eating/purging episodes, resulting in significantly low body
weight. Both AN and BN share a misinterpreted experience of the individual’s body
weight or shape, excessively influencing self-evaluation. Binge eating disorder is otherwise
characterised by recurrent binge-eating episodes that are not associated with compensatory
behaviours [90]. Some studies reported significantly altered microbiota, such as reduced
diversity and taxa abundance, possibly due to starvation, in patients with AN. For this
reason, nutritional strategies and psychobiotics administration can become potentially
relevant in AN treatment [204,205]. Even patients with BN and BED may show several
GI symptoms. A few recent studies highlighted the role of the intestinal microbiota in
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the pathophysiology of these disorders, suggesting a possible adjuvant therapy to the
psychopharmacological one [203,206].

Since more specific data on these disorders are lacking, more in-depth studies are war-
ranted to better understand the possible links between gut microbiota and EDs (Table 6).

Table 6. Studies on the relationships between gut microbiota and eating disorders.

Authors and Year Type of Study Findings

Santonicola et al., 2019
[203] Review

- Differences in alpha-diversity
and composition of
microbiota in EDs, possibly
contributing to symptomatic
manifestations and
pathophysiology;

Seitz et al., 2019 [204] Review

- Decreased alpha-diversity in
AN, which showed an
increase during weight
restoration and a correlation
with depressive and anxious
symptoms;

- Increased beta-diversity in
AN, which decreased after
weight rehabilitation;

- Specific taxa abundance in
AN could influence gut
permeability, inflammation
and symptomatic
manifestations

Seitz et al., 2019 [205] Review

- Decreased diversity and taxa
abundance in AN;

- AN-related changes in
microbiome could increase
gut permeability,
inflammation and
autoantibody formation;

- Increased microbiome
diversity in AN associated
with depressive, anxious and
EDs symptoms

Legend: AN—anorexia nervosa, ED—eating disorders.

6. Conclusions

The mounting evidence of connections between the brain and peripheral organs
allowed for highlight the possible existence of fine-tuned reciprocal influences between
the CNS and the gut microbiota. Given that the gut microbiota may affect brain functions
through hormonal messengers and impact neurotransmitter metabolism and immune
systems, it is not surprising that the gut microbiota was supposed to be involved in the
pathophysiology of several neuropsychiatric disorders.

The most consistent, albeit scattered findings are those gathered for MDs, specifically
MDD and ASDs, while the information for BD, OCD, ADHD and EDs is still limited, and
is mainly obtained through murine and translational models.

In any case, the findings of altered gut composition in some conditions, although
controversial, would suggest possible novel therapeutic targets. It is noteworthy that a
recent review underlined how some antimicrobials show AD properties (incidentally the
first drug proposed for depression treatment was isoniazid, a drug used for the treatment
of tuberculosis), and how some SSRIs, such as sertraline and fluoxetine, show antimicrobial
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effects [129]. Therefore, it was proposed that these effects would represent another positive
outcome when treating MDD [129]. However, it is conceivable that the same benefits might
be obtained in all psychiatric disorders or symptoms targeted by ADs and characterised
by gut microbiota dysbiosis, augmented gut permeability, bacterial translocation and
neuro-inflammation.

Further controlled studies, possibly conducted in large clinical samples, are needed
to deepen the role of microbiota in neuropsychiatry, as well as to explore the possible
therapeutic role of anti-, pre- and pro-biotics, as well as FMT, at least in that non-negligible
part of those patients who still do not respond to the available approved treatments. How-
ever, the association between dysbiosis and several other neuropsychiatric disorders seems
to be highly probable, possibly allowing for the enrichment of psychopharmacological
treatments with psychobiotics for an ever-increasing range of pathological conditions.
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